

BEFORE STARTING

HOUSEKEEPING

- Turn on your system's sound to hear the streaming presentation
- **Questions?** Submit them into the question box!
- The webinar on Twitter @ICTFOOTRPRINTeu

ICTFOOTPRINT EU

European Framework Initiative for Energy & Environmental Efficiency in the ICT Sector

Webinar: Sustainable ICT - Achieve more with Less: The experience of CircularComputing, CATALYST & best practice data centres

In parternship with:

Wednesday, 14th November 2018

Speakers

Steve Haskew Strategic Commercial Manager CircularComputing

Mark Acton Head of Data Centre Technical Consulting CBRE's Global Data Centre Solutions

> Vasiliki Georgiadou Project Manager Catalyst Project

Silvana Muscella - Moderator Founder & CEO Trust-IT Services

The ICTFOOTPRINT.eu initiative, in a nutshell

Mission

Become "THE" consolidated effort that, at European level, raises awareness on metrics, methodologies & best practices in measuring the energy and environmental efficiency of the ICT-sector, to facilitate their broad deployment & uptake.

Helping you choose your Low Carbon & Energy Efficiency in ICT

ICTFOOTPRINT.eu Results so far

5.000+ Community Members

26 ICT Sustainable Suppliers from 11 different countries

14 Advisory Group members from 7 different countries

5 languages

helpdesk

(EN, FR, DE, IT, ES)

1 Paper published in Scientific Event proceedings

1 user-friendly Self-Assessment Tool (SAT-O)

44 Success Stories on Green ICT

Map of ICT Standards with 20 factsheets

11 webinars with +30 different speakers & +400 registrations

Active Presence in 20 ICT & energyaware events, plus visibility in 5 events

Consolidated community of 5,000+, through an effective marketplace, help desk, dynamic Map of ICT Standards, and communication & dissemination actions

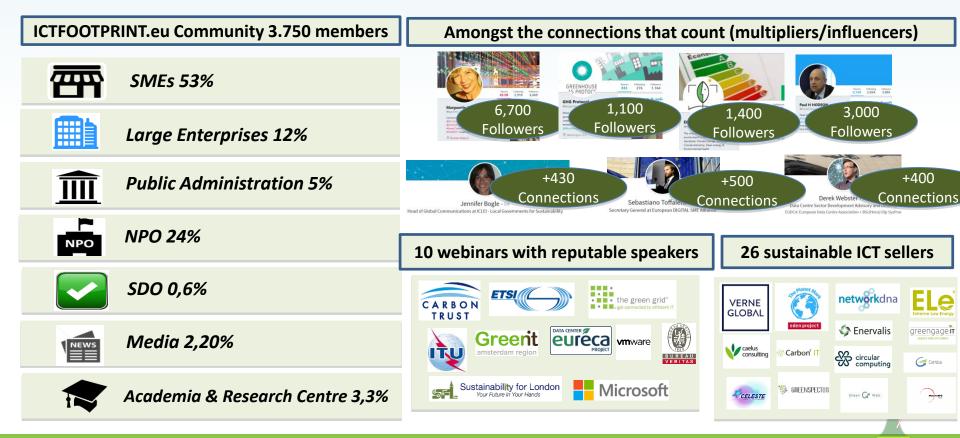
Main Outputs for our stakeholders

ictfootprint.eu

	Marketplace	Buyer: Find sustainable ICT suppliers & publish ICT sustainable needs. Seller: publish ICT sustainable services or procurements & search for clients.
	Webinars	Know more on sustainable ICT: get practical guides from a highly qualified experts in the Sustainable ICT sector and learn how to apply them in your organisation.
	Help Desk In 5 languages	Get support about how to decrease your carbon footprint & implement ICT energy efficiency standards with Online Assistance (EN, FR, ES, DE, IT).
	Success Stories	Best practices in Sustainable ICT. Search how players like you got energy savings & carbon footprint reduction. Or even showcase your success story!
SAT O Bress the KT orbest hedge if all games	<u>SAT-S</u> & <u>SAT-O</u>	Measure your own carbon footprint and start learning how to become sustainable thanks to ICT standards & methodologies.
	Map of ICT Methodologies	20 downloadable fact-sheets of ICT methodologies & standards, understand & measure your ICT goods, services organisations & cities' carbon footprint.

Join us and get energy savings by choosing low carbon ICT

14th November 2018


A Low Carbon ICT engaged community

Social Media followers, Newsletter subscribers, Webinars registrations, Marketplace sellers & buyers, Journalists, Synergies

ICTFOOTPRINT.eu COMMUNITY

How sustainable is your ICT company?

https://ictfootprint.eu/en/services/se lf-assessment-tool-organisations

SAT-O (for Organisations) – Free & simple tool to calculate the overall carbon footprint of your organisation

- Digital services provided & used by the organisation
- Structural impact of the building and personnel's
- Your own personalised report, with a light reading style, that shows the approximate climate change and primary energy footprint of your ICT-intensive organisation assessed over one year

Assess the ICT carbon footprint of your organisation, for sustainable ICT decisions

TRY "SAT-O" TOOL & MAKE INFORMED DECISIONS ON HOW TO MAKE YOUR ICT SUSTAINABLE & ENERGY EFFICIENT

14th November 2018

Get to action! Joins us at ICT2018

What?

Networking session 4th December

Hall L5 – 17:00 to 17:45

Exhibition Stand from 4th to 6th December

Exhibition Area X3 | Stand I22

Who?

Public Authorities & cities, ICT companies, NGO on sustainability & ICT, Standard Development Organisations and and ICT

Key priorities, insights, networking, green tools, sustainable IT suppliers & further activities at our exhibition stand & networking session

REGISTER ON <u>https://ictfootprint.eu/user/register</u> TO GET OUR NEWSLETTERS

ICTFOOTPRINT EU

European Framework Initiative for Energy & Environmental Efficiency in the ICT Sector

Sustainable IT – Do you know the true cost?

Name Steve Haskew

14-11-18


Who we are?

- The business was established before the Internet
- We offer 3 year old laptops and make them new again
 - Complete cosmetic overhaul
 - SSD as standard
 - New Duracell battery
 - 3 year warranty
 - Distribution through Circular Partners
 - We deliver a new Grade of IT
- We are a Secondary Equipment Manufacturer.
- We support reforestation programmes.

Sustainability?

What does it mean to you and your company?

Are you aligned, or pulling in a different direction?

One topic - Energy

Which do you value most?

- 1. Energy in Product Production
- 2. Energy In Use
- 3. Energy in Disposal

If "in use".....then this is a small % of the total

Component	HP 9470M	HP 840	Lenovo T440	Dell Lattitude E7240	Dell Lattitude E7440
EPEAT	EPEAT GOLD	EPEAT GOLD	EPEAT GOLD	EPEAT GOLD	EPEAT GOLD
ENERGY STAR	ENERGY STAR 6.0	ENERGY STAR 6.0	ENERGY STAR 6.0	ENERGY STAR 5.2	ENERGY STAR 5.2
Average energy con- sumption per year TEC	35.57 kWh/year	35.83 kWh/year	26.84 kWh/year	21.65 kWh/year	26.84 kWh/year
Average cost to run per year**	€ 5.07	€ 5.10	€ 3.81	€ 3.09	€ 3.81
User Carbon Footprint per year*	13 kgCO2eq /year ***	13 kgCO2eq /year ***	9 kgCO2eq /year ***	8 kgCO2eq /year ***	9 kgCO2eq /year ***
OEM Carbon Footprint Declaration	255kg CO2eq_***	255kg CO2eq_***	<u>330.96kg Co2eq</u> *** Production 4 3 years use	252kg Co2eq ***	242kg Co2eq ***

Consider usage and cost *versus* product saving and production CO2

Compromise

- Are you being asked to compromise when buying Sustainable IT?
 - Is this relevant?
 - Are you qualified to answer?
 - Do you know how to define the question?

Cost

Only when you have defined "what is in it for me and my company" will you be able to answer: -

Can I afford to consider sustainability?

Can I afford not to consider sustainability?

The Circular Lens

Circular Computing

Sustainable IT Environmentally friendly Ethically manufactured Carbon neutral footprint 5 x Tree's for every laptop Buyback & Reloop

IT & Finance Teams

Performance hardware EOL optimized solution Total cost of ownership Value for money Service & quality Compliance Existing supply chain

Sustainability Teams

Sustainability Environment Ethics & welfare Employee affinity Brand affinity Corporate values Compliance Accountability

User Experience

Creates positive social, ethical & environmental impact that unites and aligns the goals of employees, companies and the environment.

Thank you for your attention

Contact: Steve Haskew 2 @steve_haskew

email: steve.haskew@circularcomputing.com

www.circularcomputing.com

ICTFOOTPRINT EU

European Framework Initiative for Energy & Environmental Efficiency in the ICT Sector

Standards and Best Practices Supporting ICT Sustainability

Mark Acton – Head of Data Centre Technical Consulting, CBRE

Wed, Nov 14, 2018

STANDARDS AND BEST PRACTICES SUPPORTING ICT SUSTAINABILITY

Mark Acton – Head of Data Centre Technical Consulting, CBRE

2018

CENELEC and emerging European Standards

- CENELEC is the European Committee for Electrotechnical Standardization and is responsible for European standardization in the field of electro-technical engineering.
- Designated as a European Standards Organization by the European Commission.
- Works alongside CEN, the European Committee for Standardisation.
- CENELEC are a member of the CEN / CENELEC / ETSI Coordination Group: Green Data Centres (GDC).

http://www.cencenelec.eu/standards/Sectors/ICT/Pages/GreenDataCentres.aspx

• CENELEC TC 215 WG3 (EN 50600 series), is responsible for the development of EN50600 series of standards.

EN 50600 BACKGROUND

- EN 50600 (Information technology Data centre facilities and infrastructures)
- CENELEC TC 215 WG3 (EN 50600 series), are responsible for the development of EN50600 series of standards (data centre facilities and infrastructures)
- Includes sections for building construction, power distribution, environmental control, telecoms cabling, security systems, management and operations
- Now incorporated into ISO/IEC JTC 1 Study Group on Energy Efficiency of Data Centers (SD-EEDC) as ISO/IEC TS 22237 series

14th November 2018

EN 50600 series of standards

- **EN 50600-1**:
- Information technology Data centre facilities and infrastructures Part 1: General concepts
- EN 50600-2-1: Building construction
- Solution EN 50600-2-2: Power distribution
- EN 50600-2-3: Environmental control
- EN 50600-2-4: Telecommunications cabling infrastructure
- EN 50600-2-5: Physical security
- **EN 50600-3-1**: Management and operational information
- **EN 50600-4-1**: KPIs Overview and general requirements
- SO/IEC 30134-2: KPIs Power Usage Effectiveness (PUE) ISO/IEC 30134-2
- SO/IEC 30134-3: KPIs Renewable Energy Factor (REF) ISO/IEC 30134-3
- **EN 50600-4-4**: KPIs IT Equipment Energy Efficiency for Servers
- EN 50600-4-5: KPIs IT Equipment Energy Utilisation for Servers
- TR 50600-99-1: Energy management Recommended Practices
- **TR 50600-99-2:** Environmental sustainability Recommended Practices

CBRE

(Note: TR 50600-99-4 - Data Centre Maturity Model is in development)

EN 50600 series 99-1 and 99-2

PD CLC/TR 50600-99-1:2018

CLC/TR 50600-99-1

TECHNICAL REPORT RAPPORT TECHNIQUE

TECHNISCHER BERICHT

August 2018

ICS 35.020; 35.110; 35.160

Supersedes CLC/TR 50600-99-1:2017

English Version

Information technology - Data centre facilities and infrastructures - Part 99-1: Recommended practices for energy management

Technologies de l'information - Installations et infrastructures de centres de traitement de données - Partie 99-1 : Pratiques recommandées relatives à la gestion énergétique Informationstechnik - Einrichtungen und Infrastrukturen von Rechenzentren - Teil 99-1: Empfohlene Praktiken für das Energiemanagement

This Technical Report was approved by CENELEC on 2018-06-26.

CENEE Comembers are the national electrotechnical committees of Austria, Belgium, Bulgaria, Crostia, Cyprus, the Czote Hepublic, Denmark, Estoria, Frinder, Gremer Yuogolavi Republic of Maezdonia, France, Germary, Greece, Hungary, Lotand, Iteland, Italy, Latwia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Polland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turky and the United Kingdom.

TECHNICAL REPORT

RAPPORT TECHNIQUE

ICS 35.020; 35.110; 35.160

TECHNISCHER BERICHT

English Version

Information technology - Data centre facilities and infrastructures - Part 99-2: Recommended practices for environmental sustainability

sustainability

Technologies de l'information - Installations et infrastructures des centres de traitement de données - Partie 99-2 : Pratiques recommandées en faveur de la durabilité environnementale Informationstechnik - Einrichtungen und Infrastrukturen von Rechenzentren - Teil 99-2: Empfohlene Praktiken für umweltbezogene Nachhaltigkeit

PD CLC/TR 50600-99-2:2018

CLC/TR 50600-99-2

August 2018

This Technical Report was approved by CENELEC on 2018-07-09.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Crostia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslaw Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Lixembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. CLC/TR 50600-99-1:2018 E

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2018 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. CLC/TR 50600-99-2:2018 E

14th November 2018

International Standards Institute (ISO)

- ISO is an independent, non-governmental membership organization and the world's largest developer of voluntary International Standards
- Members are the national standards bodies of the 163 member countries around the world. Based in Geneva, Switzerland
- Works alongside International Electrotechnical Commission (IEC), in the development of emerging international data centre standards
- ISO/IEC JTC1 SC39 WG1 are responsible for the development of the ISO/IEC 30134 series of standards (data centre resource efficiency KPIs)
- PUE / DCiE from The Green Grid now falls under ISO/IEC JTC1 SC39 and is now defined as ISO/IEC 30134-2
- A key development is the adoption of EN50600 as the ISO/IEC TS 22237 series under ISO/IEC JTC1

14th November 2018

Standards based Data Centre KPIs

- CUE (Carbon Usage Effectiveness), WUE (Water Usage Effectiveness), ERE (Energy Re-Use Usage Effectiveness) are used in many data centres to indicate some areas of performance against building load.
- These either have been, or are being developed into ISO/IEC KPIs by ISO/IEC JTC1
- The current internationally agreed data centre KPIs are: ISO/IEC 30134-2 (EN 50600-4-2) Power Usage Effectiveness (PUE) and ISO/IEC 30134-3 (EN 50600-4-3) Renewable Energy Factor (REF)
- Note that neither of these are measures of data centre energy efficiency.
- A full list of ongoing data centre standards efforts can be obtained from CEN/CENELEC/ETS Coordination Group for Green Data Centres (CG GDC)

Eco-management and audit scheme (EMAS)

- A system for environmental management in the workplace published by JRC
- Aligns with the international environmental management standard ISO 14001 as well as ISO 14040 and ISO 14044 relating to Lifecycle Assessment (LCA)
- EMAS is open to every type of organisation eager to improve its environmental performance
- Supported by JRC documents published as 'best environmental management practices' (BEMPs), referred to as Sectoral Reference Documents (SRDs)
- References the use of The Best Practices from both EU CoC and TR 50600-99-1

http://ec.europa.eu/environment/emas/register/ http://susproc.jrc.ec.europa.eu/activities/emas/

ISO 14001

- ISO 14001 sets out the criteria for an environmental management system and can be used for certification. It seeks to map out a framework that a company or organisation can follow to set up an effective environmental management system.
- Using ISO 14001 can provide assurance to company management and employees as well as external stakeholders that environmental impact is being measured and improved.
- The benefits of using ISO 14001 can include:
 - Reduced cost of waste management
 - Savings in consumption of energy and materials
 - Lower distribution costs
 - Improved corporate image among regulators, customers and the public

Comparison of EMAS and ISO 14001

Criteria	EMAS I	ISO 14001	
Goal	Continuous improvement of companies environmental protection	Continuous improvement of environmental records	
Scope	EU	World	
Target group	All organisations	All organisations	
Reference framework	Site-specific (including other companies working on site) or organisation-related	Organisation-related	
Environmental regulations	Compliance obligatory	Commitment	
Public participation	Environmental statement (yearly), integration of employees	Environmental policy, no further obligation for publication	
Environm. aspects	Focus on direct aspects	Focus on direct aspects	
Validation	Obligatory all 1 to 3 years	Voluntarily by ISO–Auditor	

14th November 2018

ISO 14040

- ISO 14040 (second edition) details the requirements for conducting a Lifecycle Assessment (LCA) in conjunction with ISO 14044.
- ISO 14040 covers LCA studies and life cycle inventory (LCI) studies.
- LCA addresses the environmental aspects and potential environmental impacts (e.g. use of resources and the environmental consequences of releases) throughout a product's life cycle from raw material acquisition through production, use, end-oflife treatment, recycling and final disposal (i.e. cradle-to-grave).
- Intended to fully align with ISO 14001 and ISO 9001
- The EU CoC includes a commitment to "Introduce a plan for Life Cycle Assessment (LCA) in accordance with emerging EU guidelines and internationally standardised methodology (ISO 14040)".

Comparison of EMAS II and Life Cycle Assessment (LCA)

EMAS II

Required:

Quantification of environmental records

Consideration of environmental factors with significant impact

Verification of environmental records for environmental audit with public visibility

- Measurement of environmental factors and impacts with reliable
- records
- Support for strategic planning by presentation of improvement potential

Supply and evaluation of data for publication

LCA (ISO 14040)

Delivered:

Data collection in production phase, use phase and End of Life. (Life Cycle Inventory)

Determination of indicator values for the environmental impacts (Life Cycle Impact Assessment)

Analysis with an evaluation using Indicator system

Estimation of overall (maximum) possible improvements

14th November 2018

Mark Acton

Head of Data Centre Consulting CBRE Data Centre Solutions <u>Mark.Acton@CBRE.com</u> Twitter: @MFActon

@CBREdatacenters

CBRE Data Centres

CRRE © 2018 All Rights Reserved. All information included in this proposal pertaining to CRRE—including but not limited to its operations, employees, technology and clients—are proprietary and confidential, and are supplied with the understanding that they will be held in confidence and not disclosed to third parties without the prior written consent of CRRE. This letter/proposal is intended solely as a preliminary expression of general intendiors and is to be used for discussion purposes only. The parties intend that neither shall have any contractual obligations to the other with respect to the matters referred herein unless and until a definitive agreement has been fully executed and delivered by the parties. The parties agree that this letter/proposal is not intended to create any agreement or obligations by either party to negotiate a definitive lease/purchase and sole agreement and imposes no duly whatsoever on either party to continue negotiations, including without limitation any obligation to negotiate in good faith or in any way other than a trains. The party to negotiate a definitive ease-purchase and sole agreement, and without any liability to the other party, either party no egotiations with the other parts. The parties intended accounts and/or (3) unilaterally terminang expression of a definitive agreement, and without any liability to the other orly either party more and other countries. All other marks displayed on this document are the property of their respective owners.

ICTFOOTPRINT EU

European Framework Initiative for Energy & Environmental Efficiency in the ICT Sector

CATALYST introduces the Green Data Centre Assessment Toolkit

Vasiliki Georgiadou Green IT Amsterdam

Wed, Nov 14, 2018

More Data, Less Gas

ICT converts electricity to heat

There were there is a supply or demand in data

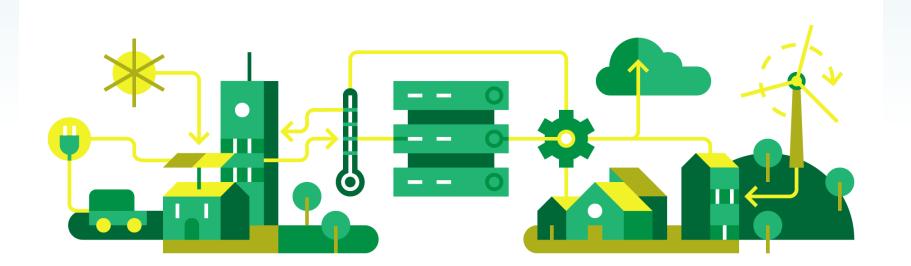
Supporting the grid for sustainability

Local consumption of locally produced energy

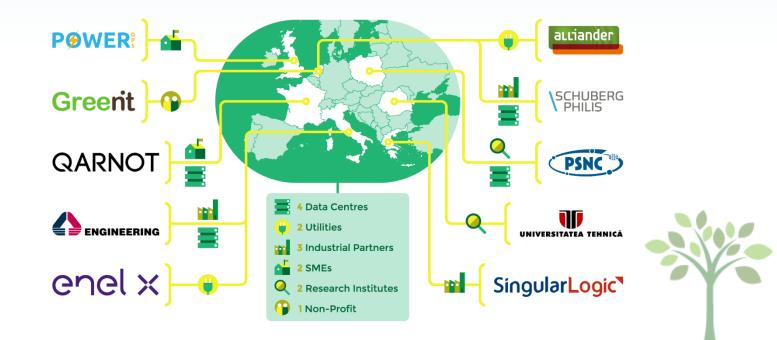
Produce and use heat

Contribute to energy flexibility

14th November 2018


We Are Green IT Amsterdam

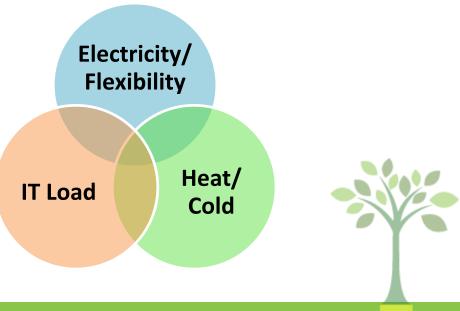
"Data Centres can and should offer energy flexibility services to their smart grid and district heating networks"



14th November 2018

CATALYST at a glance

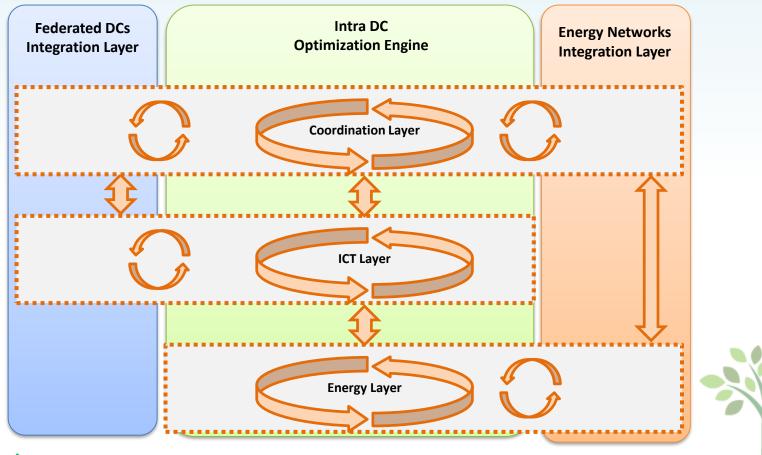
- Converting Data Centres in Energy Flexibility Ecosystems
- H2020-EE-2017-20 Innovation Action
- October 2017 October 2020
- 2.982.805 Euro (EU 2.299.103,5 Euro)



14th November 2018

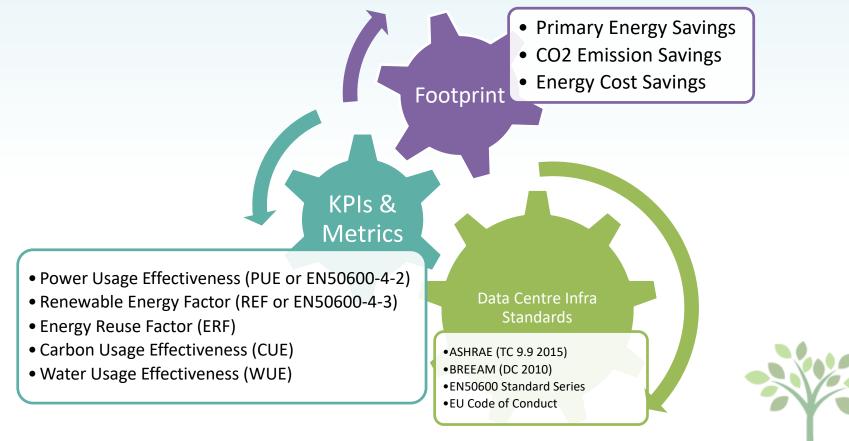
Marketplace as a Service

Scenarios are built up from the **premise** that *electricity (incl. flexibility), heat and IT load* are nothing but **commodities** that data centres can **transfer, exchange and trade** in their corresponding emerging markets either individually or combined to achieve **synergies** whenever applicable.



14th November 2018

"Follow the Energy"



Catalyst

14th November 2018

Data Centre Metrics Landscape: A Snapshot

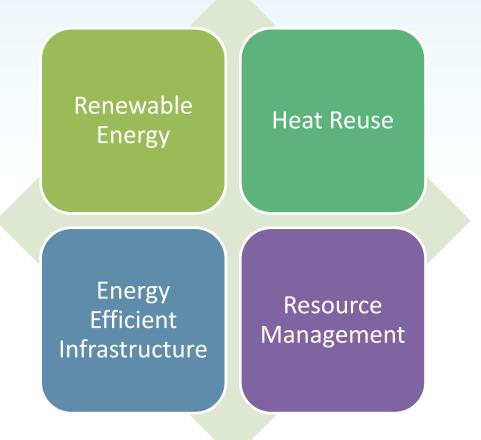
Catalyst

14th November 2018

Selected Metrics & KPIs (1/2)

Metric	Description	Formula	Unit / Range	Optimal Value	Source
Power Usage Effectiveness – PUE	% of energy spent powering ancillary equipment	Total Facility Energy IT Equipment Energy	N/A 1 <pue< td=""><td>As close to 1 as possible</td><td>EN 50600-4- 2; ISO/IEC 30134-2</td></pue<>	As close to 1 as possible	EN 50600-4- 2; ISO/IEC 30134-2
Renewable Energy Factor – REF	% of renewable energy over total DC energy	RE owned & controlled by DC Total Facility Energy	N/A O≤REF≤ 1	1 = DC powered 100% by RE	EN 50600-4- 3; ISO/IEC 30134-3
Energy Reuse Factor – ERF	% of energy exported for reuse outside of DC	Reuse X SourceFactor Total Facility Energy	N/A O≤ERF≤ 1	1 = all energy is being reused	ISO/IEC 30134-6; Cluster
Water Usage effectiveness – WUE	Operational water usage associated with DC	Annual Water Usage IT Equipment Energy	L/kWh 0≤WUE	0 = no water use	The Green Grid; whitepaper #35

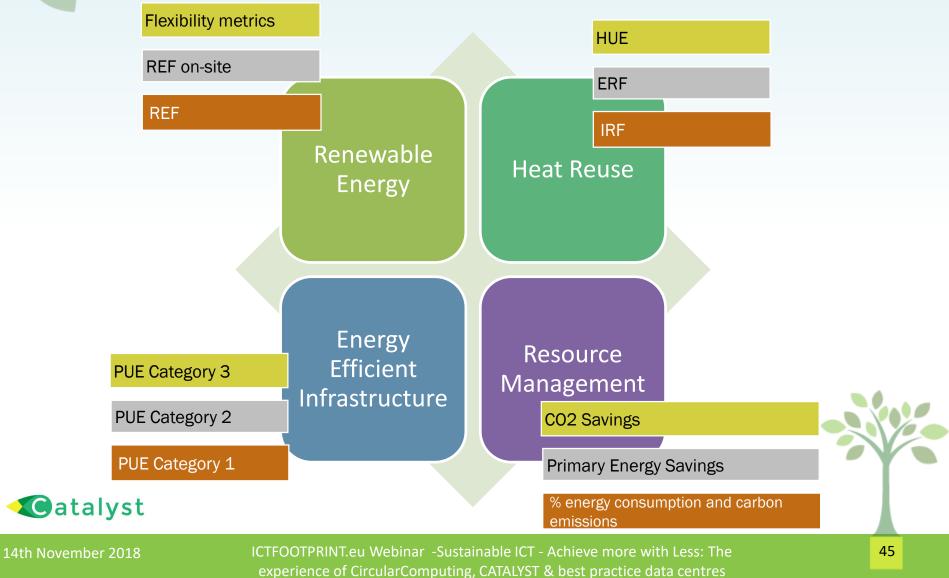
14th November 2018


Selected Metrics & KPIs (2/2)

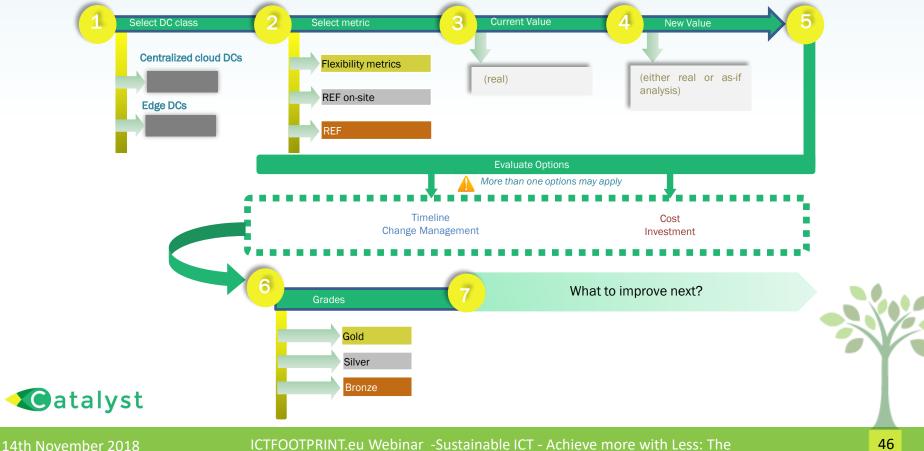
Metric	Description	Formula	Unit / Range	Optimal Value	Source	
Adaptability Power Curve at RES – APC _{ren}	Ability of a DC to adapt to the production curve of RES	$1 - \frac{\sum_{i=1}^{n} K_{APC_{ren}} \cdot E_{Ren i} - E_{DCi} }{\sum_{i=1}^{n} E_{DCi}}$	N/A 0≤ APC _{ren} ≤1	1 = full adaptation	Cluster	
Data Centre Adapt - DCA	Ability of a DC to change its energy consumption behaviour	$\frac{1}{-\frac{\sum_{i=1}^{n} K_{DCA} \times E_{DCReal i} - E_{DCBasel}}{\sum_{i=1}^{n} E_{DCBaseline i}}}$	N/A 0< DCA ≤1	The closer to 0, the more flexible the DC is	Cluster	
Primary Energy Savings – PES	% of savings in terms of primary energy associated with DC operations	$1 - \frac{PE_{Current,\Delta t}}{PE_{Baseline_adjusted_{\Delta t}}}$	N/A 0≤PES<1	As close to 1 as possible	Cluster	
CO2 Savings	% of savings in terms of CO2 emissions associated with DC operations	$1 - \frac{CO2_{current_{\Delta t}}}{CO2_{baseline_adjusted_{\Delta t}}}$	N/A 0≤CO2 Savings<1	As close to 1 as possible	Cluster	

14th November 2018

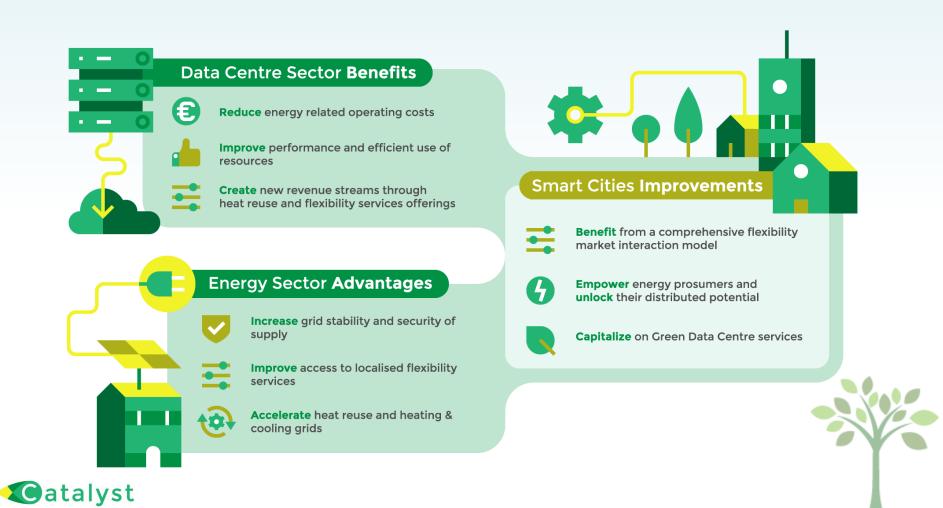
The Green Data Centre Assessment Toolkit



14th November 2018


The Toolkit: Building Blocks

An example: Renewable Energy


The energy consumed by the DC facility should come solely from renewable energy sources

experience of CircularComputing, CATALYST & best practice data centres

Value Proposition

The Green Data Centre Stakeholders Group (#GDCSG)

We bring together Energy, Data Centre and Smart City ecosystems to enable the integration of Data Centres as active players in the Smart Energy Infrastructures of the future.

Download the <u>manifesto</u>.

14th November 2018

Thank you for your attention

Contact: Vasiliki Georgiadou

email: vgeorgiadou@greenitamsterdam.nl

More on CATALYST: <u>www.project-catalyst.eu</u> <u>catalyst-info@project-catalyst.eu</u> (twitter) @catalyst

CTFOOTPRI

14th November 2018

THANK YOU!

STAY TUNED FOR REGULAR UPDATES

the future is sustainable!

www.ictfootprint.eu - Everything is there!

- Register to our Newsletter: ictfootprint.eu/#newsletter
- Contact us by email: contact@ictfootprint.eu
- **Follow us on Twitter:** @ICTFOOTPRINTeu
- Connect with us on Linkedin: linkedin.com/in/ictfootprinteu
- See our previous webinars: https://ictfootprint.eu/en/webinar
- Find out our next events: www.ictfootprint.eu/en/all-event
- Know more about our services: www.ictfootprint.eu/en/about/project